Overview of IAL Software Programs for the Calculation of Electrical Drive Systems
<table>
<thead>
<tr>
<th>Machine type</th>
<th>Synchronous machines</th>
<th>Induction machines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electrically excited</td>
<td>Permanent magnet</td>
</tr>
<tr>
<td>Topic</td>
<td>Salient-pole rotor</td>
<td>Cylindrical rotor</td>
</tr>
<tr>
<td>Steady-state performance</td>
<td>SPSYN</td>
<td>VPSYN</td>
</tr>
<tr>
<td>Calculation of sudden short circuits & transient phenomena</td>
<td>SYNDYN</td>
<td>ALFRED / FELDER</td>
</tr>
<tr>
<td>Noise</td>
<td>ALFRED</td>
<td>AGR</td>
</tr>
<tr>
<td>Operating maps</td>
<td>SPSYN</td>
<td>SPOK</td>
</tr>
<tr>
<td>Quasi steady-state start-up</td>
<td>SPASYN</td>
<td>VPASYN</td>
</tr>
<tr>
<td>Powertrain</td>
<td>Powertrain Simulator</td>
<td>Powertrain Simulator</td>
</tr>
<tr>
<td>Pulsation torques</td>
<td>ALFRED</td>
<td>SPOK</td>
</tr>
<tr>
<td>Other</td>
<td>KAPE</td>
<td>USYM</td>
</tr>
</tbody>
</table>
AGR – Analytical calculation of magnetic noise

Scope of calculations
- Analytical, steady-state
- Vibration amplitudes at core back
- Emitted sound pressure level
- Eigenfrequencies of stator
- Noise characteristics (IDEMA tool chain)

Machine type(s)
- Permanent magnet synchronous machines
- Induction machines
- El. excit. synchronous machines

Input data
- Geometrical data
- Spatial harmonics in the air-gap field (e.g. calculated with ALFRED, FELDER or FEMAG)

Constraints
- Internal rotors only (external rotors optionally, on request)
- Radial-flux machines only
- Mode \(r = 1 \) not considered
ALFRED – Air-gap field analysis of faultless or damaged electrical three-phase machines

Scope of calculations
- Analytical, steady-state, eccentricities, broken bars in cage, interturn faults
- Resulting air-gap field (permeance waves, spatial harmonics of current distribution)
- Winding e.m.f.
- Air-gap torque
- Loss distribution in cage

Input data
- Geometrical data
- Winding data
- Rating data (magnetic circuit)
- Stator and exciter current, if applicable

Constraints
- Internal rotors only
- Radial-flux machines only
- No solid salient-pole or cylindrical rotors
- No permanent magnet synchronous machines
- Rough consideration of saturation

Machine type(s)
- Induction machines
- El. excit. synchronous machines
ASASYN – Asynchronous start-up of induction machines

- **Scope of calculations**
 - Analytical calculation of the quasi steady-state start-up of induction machines considering the temperature rise in the windings
 - Torque, power factor, currents and temperature rise in stator and rotor windings depending on the slip
 - Starting time, temperature rise in the rotor core
 - Temperature rise in the rotor winding in case of a stalled rotor

- **Machine type(s)**
 - Induction machines (squirrel-cage and slip-ring rotors)

- **Input data/requirements**
 - Geometrical data of the active part of stator and rotor
 - Results from ASYN calculation
 - Linear or quadratic speed dependence of the load torque consumed by the driven machine
 - Consideration of an external resistance in case of slip-ring rotors
 - Manual adjustment of the current displacement factors in the end ring
ASYN – Calculation of induction machines

- **Scope of calculations**
 - Analytical calculation of steady-state operating points
 - Single-point and map calculations
 - Symmetrical multiphase windings
 - Motor and generator mode

- **Input**
 - Geometrical, lamination and winding data
 - Rating data
 - Steady-state short-circuit current

- **Machine type(s)**
 - Squirrel-cage rotors (with one or two cages)
 - Slip-ring rotors
 - Doubly fed induction machines

- **Constraints**
 - No transient phenomena
 - Radial-flux machines only
 - No thermal prediction
BIEGE – Lateral critical speeds

- **Scope of calculations**
 - Analytical
 - Lateral critical speeds

- **Applications**
 - Shaft-bearing systems

- **Input data**
 - Geometrical data of the shaft, bearing parameters and positions
 - Point and distributed loads

- **Constraints**
 - Internal rotors only
FELDER – Calculation of spatial harmonics in the air-gap field of cage induction machines

Scope of calculations
- Spatial harmonics of the flux density in integer-slot windings and double-layer fractional-slot windings
- Analytical, steady-state
- Consideration of slotting, saturation and eccentricities
- Consideration of harmonics in the current
- Processing of the spatial harmonics of the flux density for input in AGR

Machine type(s)
- Cage induction machines

Input data
- Geometrical data
- Winding data
- Parameters of the active part

Constraints
- Internal rotors only
- Radial-flux machines only
- Cage IM only
GMA – Modal analysis of noise

- **Scope of calculations**
 - Emitted sound pressure level
 - Dominant frequencies
 - Vibration modes
 - Deflections at the surface along the circumference

- **Machine type(s)**
 - Permanent magnet synchronous machines
 - Induction machines
 - Electrically excited synchronous machines
 - Synchronous reluctance machines

- **Input data**
 - PLT file of *FEMAG-DC* (PMSM)
 - *FELDER* output file (IM)
 - *ALFRED* output file (ESM, IM)
 - Modal matrix of *ANSYS*
 - Node positions of *ANSYS*

- **Constraints**
 - Cylindrical cores only
KAPE – Calculation of characteristics for stationary-field machines

- **Scope of calculations**
 - Analytical, steady-state, balanced operation
 - No-load, magnetic circuit calculation
 - Equivalent circuit elements (abc and dq)
 - Partial load and rated duty
 - Losses of passive front end
 - Characteristic of field current of the primary machine depending on the excitation of the exciter machine

- **Input data**
 - Geometrical data
 - Winding data

- **Requirements**
 - Pole form coefficients of *PolformIdent* software

- **Constraints**
 - Radial-flux machines only

- **Machine type(s)**
 - Stationary-field machines
SPASYN – Quasi steady-state start-up of salient-pole synchronous machines

- **Scope of calculations**
 - Asynchronous start-up, quasi steady-state, analytical, start-up time
 - M-n characteristic considering Goerges dip and current displacement
 - Asynchronous torque, pulsation torques of double slip frequency, bar- and ring-type current distribution
 - Winding and damper bar temperatures

- **Input data**
 - Geometrical data
 - Winding data
 - Equivalent circuit elements (e.g. from results of SPSYN calculation)
 - Thermal conductivities
 - Starting parameters: counter torque, cooling time

- **Machine type(s)**
 - Salient-pole synchronous machines with line start
SPOK – Calculation of efficiency-optimized maps for salient-pole synchronous machines

- **Scope of calculations**
 - Numerical (FEM), steady-state, balanced operation
 - Single load point calculation, map calculation (efficiency-optimized)
 - Loss calculation
 - Flux linkages, torque, inductances, quantities at the terminals

- **Machine type(s)**
 - Salient-pole synchronous machines

- **Input data**
 - Machine data
 - Winding data

- **Requirements**
 - *FEMAG-DC*

- **Constraints**
 - Radial-flux machines only
SPOK-Fast – Fast calculation of optimized maps for salient-pole and cylindrical-rotor synchronous machines

- **Scope of calculations**
 - Numerical (FEM), steady-state, balanced operation
 - No-load characteristic, single load point calculation, map calculation (e.g. efficiency-optimized)
 - Loss calculation, flux linkages (FFT), torque (FFT), inductances, quantities at the terminals
 - Air-gap field (FFT)

- **Machine type(s)**
 - El. excit. synchronous machines

- **Input data**
 - Machine data
 - Winding data
 - Material data

- **Requirements**
 - Matlab
 - FEMAG-DC with FESI

- **Constraints**
 - Radial-flux machines only
SPSYN – Calculation of salient-pole synchronous machines

- **Scope of calculations**
 - Analytical, steady-state, balanced operation, fundamental perform.
 - Magnetic circuit calculation, no-load & short-circuit characteristic
 - Rating point, partial-load points, breakdown point: losses, quantities in phasor diagrams
 - Equiv. circuit elements & time constants (satur. & non-saturated)
 - THD factor (no-load)
 - M-n characteristics

- **Input data**
 - Geometrical data
 - Winding data
 - Rating data
 - Operating limits

- **Constraints**
 - Internal rotors only

- **Machine type(s)**
 - Salient-pole synchronous machines
SYNDYN – Transient phenomena in electrically excited synchronous machines and induction machines

- **Scope of calculations**
 - Torsional critical speeds
 - Transient phenomena: synchronization, break in power supply, phase-to-phase & three-phase faults, start-up, braking, load consumption & load rejection
 - Magnetizing saturation considered
 - Current displacement in the cage
 - Modelling of shafting as multibody system with max. 19 masses

- **Machine type(s)**
 - El. excited synchronous machines
 - Induction machines

- **Input data**
 - Equivalent circuit elements, no-load characteristic
 - Mechanical data as multibody system
 - Initial state
 - Line/converter voltage, field voltage, counter torque

- **Constraints**
 - Fundamental behaviour,
 - Operation at stiff system, no controllers
 - Constant equiv. circuit param. within one calculation
SV 8 – Current displacement in rectangular conductors

- **Scope of calculations**
 - Analytical, steady-state
 - Current displacement in and leakage coefficients of symmetrical integer-slot and fractional-slot windings
 - Coils of equal coil pitch and concentric coils
 - Rectangular conductors

- **Input data**
 - Machine data
 - Winding data
 - Winding diagram
 - Conductor dimensions

- **Constraints**
 - Rough approximation of leakage flux in conductors near the air gap

- **Machine type(s)**
 - All machine types with form-wound coils
PMOK – Calculation of efficiency-optimized characteristics for permanent magnet synchronous machines

- **Scope of calculations**
 - Numerical (FEM), steady-state, balanced operation
 - Single load point calculation, map calculation (η-optimized, MTPA, FOC)
 - Flux linkages, torque, inductances, quantities at the terminals, losses
 - Coupling with powertrain simulator

- **Input data**
 - Geometrical data
 - Autom. model preparation
 - Surface-mounted magnets
 - Buried magnets
 - Machine data
 - Winding data

- **Machine type(s)**
 - PM synchronous machines

- **Requirements**
 - FEMAG-DC

- **Constraints**
 - Radial-flux machines only
PS – Powertrain simulator

- **Scope of calculations**
 - Driving cycle simulation of electric vehicles
 - Energy consumption
 - Temperature pattern of motor components
 - Simulation of power semiconductors
 - Optional simulation with battery systems and boost converters
 - Single load point calculation

- **Machine type(s)**
 - Induction machines
 - Permanent magnet and electrically excited synchronous machines

- **Input data**
 - Geometrical and winding data of the machine

- **Requirements**
 - Characteristics from other software programs:
 - PMOK, SPOK, SPOK-FAST, SPSYN, ASYN

- **Constraints**
 - Only internal rotors considered by thermal models so far
VPSYN – Calculation of synchronous machines with cylindrical rotor

- **Type of calculations**
 - Analytical, steady-state, balanced operation, fundamental perform.
 - Magnetic circuit calculation, no-load & short-circuit characteristic
 - Rating point, partial-load points, breakdown point: losses, quantities in phasor diagrams
 - Equiv. circuit elements & time constants (satur. & non-saturated)
 - THD factor (no-load)
 - M-n characteristics

- **Input data**
 - Geometrical data
 - Winding data
 - Rating data
 - Operating limits

- **Constraints**
 - Internal rotors only
 - Radial-flux machines only

- **Machine type(s)**
 - Synchronous machines with cylindrical rotor
TKDZ – Torsional critical speeds

- **Scope of calculations**
 - Analytical
 - Torsional critical speeds

- **Machine type(s)**
 - All shaft-bearing systems

- **Input data**
 - Geometrical data of the shaft
 - Point loads

- **Constraints**
 - Internal rotors only (rotating around direct axis)
USYM – Performance in case of asymmetrical stator winding

- **Scope of calculations**
 - Analytical, steady-state, unbalanced operation (missing coils in stator winding)
 - Current distribution in single stator branches
 - Partial load and rated duty

- **Input data**
 - Geometrical data
 - Winding data
 - Rating data
 - Magnetic circuit data, e.g., from SPSYN, VPSYN or ASYN

- **Machine type(s)**
 - Electrically excited synchronous machines
 - Induction machines

- **Constraints**
 - Internal rotors only
 - Radial-flux machines only
 - No solid salient-pole or cylindrical rotors
UWELLE – Calculation of shaft voltages

- **Scope of calculations**
 - Analytical calculation of shaft voltages caused by imperfections and unbalances in the magnetic circuit
 - Consideration of damper windings
 - Influence of rotor skewing
 - Consideration of non-linear magnetizing curve
 - Different types and distributions of imperfections in the stator yoke
 - Frequency-dependent analysis of resulting (damped) shaft voltages sorted by cause

- **Machine type(s)**
 - Cage induction machines

- **Input/requirements**
 - Geometrical and winding data of the active part of stator and rotor
 - Operating point data and corresponding magnetic voltages

- **Constraints**
 - Imperfections in stator possible only
 - Cage rotors only
VOPI – Voltage on Power Interfaces

- **Scope of calculations**
 - Calculation of motor terminal voltage in accordance with IEC 61800-8
 - Calculation depending on:
 - voltage source (grid)
 - rectifier and converter
 - filter
 - cable parameters
 - motor performance
 - Either calculation or manual entry of cable parameters possible

- **Machine type(s)**
 - Converter-fed machines

- **Input/requirements**
 - Grid voltage and type
 - Fundamental frequency
 - B6C/B2C/active rectifier
 - 2-,3-, multilevel converters
 - Filter type: none, dU/dt, sinusoidal filter, output reactor, HF common-mode filter
 - Cable parameters: Capacitance and inductance per unit length / alternative: type and geometrical cable dimensions
 - Motor performance
VPASYN – Quasi steady-state start-up of synchronous machines with cylindrical rotor

- **Scope of calculations**
 - Asynchronous start-up, quasi steady-state, analytical
 - M-n characteristic considering the Goerges dip
 - Asynchronous torque, pulsation torques
 - Bar- and ring-type current distribution
 - Winding and damper bar temperatures
 - Start-up time
 - Consideration of current displacement

- **Machine type(s)**
 - Cylindrical-rotor synchronous machines with line start

- **Input data**
 - Geometrical data
 - Equivalent circuit elements (result of VPSYN calculation)
 - Thermal data
 - Start-up data: counter torque, cooling time
WAMOB – AC induction machines in consideration of spatial harmonics

- **Scope of calculations**
 - Speed-torque characteristic considering the positive- and negative-sequence harmonics
 - Power consumption and power output
 - Phase and line current
 - Capacitor voltage

- **Machine type(s)**
 - Cage induction machines with two- and three-phase stator windings for AC operation
 - Steinmetz star and delta connection

- **Input data**
 - Winding data
 - symmetrical
 - quasi symmetrical
 - arbitrarily asymmetrical
 - Geometrical machine data
 - Rating data

- **Constraints**
 - Cage rotors only
 - Internal rotors only
WET – Winding design tool

- **Scope of calculations**
 - Design/analysis of multiphase integer-slot and fractional-slot windings
 - Analytical calculation of all winding factors, differential leakage and symmetrical components of e.m.f.
 - Visualization of the Goerges polygon and the resulting distribution of the ampere turns (including FFT)
 - Symmetrical and (given) asymmetrical windings

- **Machine type(s)**
 - Induction and synchronous machines

- **Input/requirements**
 - Winding design/analysis
 - number of phases
 - number of pole pairs
 - number of slots
 - number of layers
 - coil pitch for double-layer windings
 - Analysis of asym. windings
 - Specific. of winding diagram
 - Entry of number of turns, if required

- **Constraints**
 - Max. two winding layers
WKF – Forces in the winding overhang and end-turn bracing

Scope of calculations
- Analytical calculation of forces in the winding overhang
- Recommendations for end-turn bracings
- Phase-to-phase and three-phase faults
- Start-up
- Form-wound coils with resin-rich or VPI insulations

Input data
- Geometrical coil data
- Winding data
- Rating data
- Steady-state short-circuit current

Constraints
- Internal rotors only
- Radial-flux machines only
- No round-wire windings

Machine type(s)
- Induction machines
- El. excit. synchronous machines (optional, on request)