

Overview of IAL Software Programs for the Calculation of Electrical Drive Systems

Institute for Drive Systems and Power Electronics

Combines FEM with analytical post-processing analytical

	Synchronous machines				Induction machines		
Machine type	Electrically excited		Permanent magnet	Reluctance	three-phase		single-phase
Торіс	Salient- Cylindri- pole rotor cal rotor				Squirrel- cage rotor	Slip-ring rotor	Squirrel-cage rotor
Steady-state performance	<u>SPSYN</u> <u>VPSYN</u>		<u>РМОК</u>		ASYN		WAMOB
	<u>SPOK</u>						
	SPOK-FAST						
Calculation of sudden short circuits & transient phenomena	<u>SYNDYN</u>				<u>SYNDYN</u>		
Noise	ALF	RED			ALFRED / FELDER		
			AGR		AGR		
			GMA				
Operating maps	<u>SPSYN</u>						
	<u>SPOK</u>		РМОК		ASYN		
	SPOK-FAST						
Quasi steady-state start-up	<u>SPASYN</u> <u>VPASYN</u>				ASASYN		
Powertrain	Powertrain Simulator		<u>Powertrain</u> <u>Simulator</u>	Powertrain Powertrain Simulator			
Pulsation torques	ALFRED		<u>РМОК</u>		ALFRED		
	<u>SPOK</u>						
	SPOK-FAST						
Other	KAPE				WKE		
	<u>USYM</u>				USY	<u>YM</u> & <u>UWELLE</u>	
	BIEGE & TKDZ						
	<u>SV 8</u> & <u>WET</u> & <u>VOPI</u>						

AGR – Analytical calculation of magnetic noise

- Scope of calculations
 - Analytical, steady-state
 - Vibration amplitudes at core back
 - Emitted sound pressure level
 - Eigenfrequencies of stator
 - Noise characteristics (IDEMA tool chain)

Machine type(s)

- Permanent magnet synchronous machines
- Induction machines
- El. excit. synchronous machines

Input data

- Geometrical data
- Spatial harmonics in the airgap field (e.g. calculated with ALFRED, FELDER or FEMAG)

- Internal rotors only (external rotors optionally, on request)
- Radial-flux machines only
- Mode r = 1 not considered

ALFRED – Air-gap field analysis of faultless or damaged electrical three-phase machines

- Scope of calculations
 - Analytical, steady-state, eccentricities, broken bars in cage, interturn faults
 - Resulting air-gap field (permeance waves, spatial harmonics of current distribution)
 - Winding e.m.f.
 - Air-gap torque
 - Loss distribution in cage

Machine type(s)

- Induction machines
- El. excit. synchronous machines

Input data

- Geometrical data
- Winding data
- Rating data (magnetic circuit)
- Stator and exciter current, if applicable

- Internal rotors only
- Radial-flux machines only
- No solid salient-pole or cylindrical rotors
- No permanent magnet synchronous machines
- Rough consideration of saturation

ASASYN – Asynchronous start-up of induction machines

Scope of calculations

- Analytical calculation of the quasi steady-state start-up of induction machines considering the temperature rise in the windings
- Torque, power factor, currents and temperature rise in stator and rotor windings depending on the slip
- Starting time, temperature rise in the rotor core
- Temperature rise in the rotor winding in case of a stalled rotor

Machine type(s)

 Induction machines (squirrel-cage and slip-ring rotors)

Input data/requirements

 Geometrical data of the active part of stator and rotor

Leibniz

Universität

Hannover

- Results from ASYN calculation
- Linear or quadratic speed dependence of the load torque consumed by the driven machine
- Consideration of an external resistance in case of slipring rotors
- Manual adjustment of the current displacement factors in the end ring

ASYN – Calculation of induction machines

- Scope of calculations
 - Analytical calculation of steady-state operating points
 - Single-point and map calculations
 - Symmetrical multiphase windings
 - Motor and generator mode

Machine type(s)

- Squirrel-cage rotors (with one or two cages)
- Slip-ring rotors
- Doubly fed induction machines

Input

- Geometrical, lamination and winding data
- Rating data
- Steady-state short-circuit current

- No transient phenomena
- Radial-flux machines only
- No thermal prediction

BIEGE – Lateral critical speeds

Scope of calculations

- Analytical
- Lateral critical speeds

Applications

Shaft-bearing systems

Input data

- Geometrical data of the shaft, bearing parameters and positions
- Point and distributed loads

Constraints

Internal rotors only

FELDER – Calculation of spatial harmonics in the air-gap field of cage induction machines

- Scope of calculations
 - Spatial harmonics of the flux density in integer-slot windings and double-layer fractional-slot windings
 - Analytical, steady-state
 - Consideration of slotting, saturation and eccentricities
 - Consideration of harmonics in the current
 - Processing of the spatial harmonics of the flux density for input in AGR

- Machine type(s)
 - Cage induction machines

Input data

- Geometrical data
- Winding data
- Parameters of the active part

- Internal rotors only
- Radial-flux machines only
- Cage IM only

GMA – Modal analysis of noise

Scope of calculations

- Emitted sound pressure level
- Dominant frequencies
- Vibration modes
- Deflections at the surface along the circumference

Machine type(s)

- Permanent magnet synchronous machines
- Induction machines
- Electrically excited synchronous machines
- Synchronous reluctance machines

Input data

- PLT file of *FEMAG-DC* (PMSM)
- FELDER output file (IM)

Leibniz

Universität Hannover

- ALFRED output file (ESM, IM)
- Modal matrix of ANSYS
- Node positions of ANSYS

Constraints

Cylindrical cores only

KAPE – Calculation of characteristics for stationary-field machines

- Scope of calculations
 - Analytical, steady-state, balanced operation
 - No-load, magnetic circuit calculation
 - Equivalent circuit elements (abc and dq)
 - Partial load and rated duty
 - Losses of passive front end
 - Characteristic of field current of the primary machine depending on the excitation of the exciter machine

Machine type(s)

Stationary-field machines

Input data

- Geometrical data
- Winding data

Requirements

 Pole form coefficients of *PolformIdent* software

Constraints

Radial-flux machines only

SPASYN – Quasi steady-state start-up of salient-pole synchronous machines

- Scope of calculations
 - Asynchronous start-up, quasi steady-state, analytical, start-up time
 - M-n characteristic considering Goerges dip and current displacement
 - Asynchronous torque, pulsation torques of double slip frequency, bar- and ring-type current distribution
 - Winding and damper bar temperatures
- Machine type(s)
 - Salient-pole synchronous machines with line start

Input data

- Geometrical data
- Winding data
- Equivalent circuit elements (e.g. from results of SPSYN calculation)
- Thermal conductivities
- Starting parameters: counter torque, cooling time

SPOK – Calculation of efficiency-optimized maps for salientpole synchronous machines

- Scope of calculations
 - Numerical (FEM), steady-state, balanced operation
 - Single load point calculation, map calculation (efficiency-optimized)
 - Loss calculation
 - Flux linkages, torque, inductances, quantities at the terminals
- Machine type(s)
 - Salient-pole synchronous machines

- Input data
 - Machine data
 - Winding data
- Requirements
 - FEMAG-DC
- Constraints
 - Radial-flux machines only

SPOK-Fast – Fast calculation of optimized maps for salientpole and cylindrical-rotor synchronous machines

- Scope of calculations
 - Numerical (FEM), steady-state, balanced operation
 - No-load characteristic, single load point calculation, map calculation (e.g. efficiency-optimized)
 - Loss calculation, flux linkages (FFT), torque (FFT), inductances, quantities at the terminals
 - Air-gap field (FFT)
- Machine type(s)
 - El. excit. synchronous machines

Input data

- Machine data
- Winding data
- Material data

Requirements

- Matlab
- FEMAG-DC with FESI

Constraints

Radial-flux machines only

SPSYN – Calculation of salient-pole synchronous machines

Scope of calculations

- Analytical, steady-state, balanced operation, fundamental perform.
- Magnetic circuit calculation, no-load
 & short-circuit characteristic
- Rating point, partial-load points, breakdown point: losses, quantities in phasor diagrams
- Equiv. circuit elements & time constants (satur. & non-saturated)
- THD factor (no-load)
- M-n characteristics

Machine type(s)

Salient-pole synchronous machines

Input data

- Geometrical data
- Winding data
- Rating data
- Operating limits

Constraints

Internal rotors only

SYNDYN – Transient phenomena in electrically excited synchronous machines and induction machines

- Scope of calculations
 - Torsional critical speeds
 - Transient phenomena: synchronization, break in power supply, phase-to-phase & threephase faults, start-up, braking, load consumption & load rejection
 - Magnetizing saturation considered
 - Current displacement in the cage
 - Modelling of shafting as multibody system with max. 19 masses

Machine type(s)

- El. excited synchronous machines
- Induction machines

Input data

- Equivalent circuit elements, no-load characteristic
- Mechanical data as multibody system
- Initial state
- Line/converter voltage, field voltage, counter torque

- Fundamental behaviour,
- Operation at stiff system, no controllers
- Constant equiv. circuit param. within one calculat.

SV 8 – Current displacement in rectangular conductors

Scope of calculations

- Analytical, steady-state
- Current displacement in and leakage coefficients of symmetrical integer-slot and fractional-slot windings
- Coils of equal coil pitch and concentric coils
- Rectangular conductors

Machine type(s)

All machine types with form-wound coils

Input data

- Machine data
- Winding data
 - Winding diagram
 - Conductor dimensions

Constraints

 Rough approximation of leakage flux in conductors near the air gap

PMOK – Calculation of efficiency-optimized characteristics for permanent magnet synchronous machines

- Scope of calculations
 - Numerical (FEM), steady-state, balanced operation
 - Single load point calculation, map calculation (η-optimized, MTPA, FOC)
 - Flux linkages, torque, inductances, quantities at the terminals, losses
 - Coupling with powertrain simulator
- Machine type(s)
 - PM synchronous machines

Input data

- Geometrical data
 - Autom. model preparation
 - Surface-mounted magnets
 - Buried magnets
- Machine data
- Winding data
- Requirements
 - FEMAG-DC
- Constraints
 - Radial-flux machines only

PS – Powertrain simulator

Scope of calculations

- Driving cycle simulation of electric vehicles
- Energy consumption
- Temperature pattern of motor components
- Simulation of power semiconductors
- Optional simulation with battery systems and boost converters
- Single load point calculation

Machine type(s)

- Induction machines
- permanent magnet and electrically excited synchronous machines

Input data

 Geometrical and winding data of the machine

Leibniz

Universität Hannover

Requirements

- Characteristics from other software programs:
 - PMOK, SPOK, SPOK-FAST, SPSYN, ASYN

Constraints

 Only internal rotors considered by thermal models so far

VPSYN – Calculation of synchronous machines with cylindrical rotor

- Type of calculations
 - Analytical, steady-state, balanced operation, fundamental perform.
 - Magnetic circuit calculation, no-load
 & short-circuit characteristic
 - Rating point, partial-load points, breakdown point: losses, quantities in phasor diagrams
 - Equiv. circuit elements & time constants (satur. & non-saturated)
 - THD factor (no-load)
 - M-n characteristics

Machine type(s)

 Synchronous machines with cylindrical rotor Input data

- Geometrical data
- Winding data
- Rating data
- Operating limits

- Internal rotors only
- Radial-flux machines only

TKDZ – Torsional critical speeds

- Scope of calculations
 - Analytical
 - Torsional critical speeds
- Machine type(s)
 - All shaft-bearing systems

Input data

- Geometrical data of the shaft
- Point loads

Constraints

 Internal rotors only (rotating around direct axis)

USYM – Performance in case of asymmetrical stator winding

- Scope of calculations
 - Analytical, steady-state, unbalanced operation (missing coils in stator winding)
 - Current distribution in single stator branches
 - Partial load and rated duty

Machine type(s)

- Electrically excited synchronous machines
- Induction machines

Input data

- Geometrical data
- Winding data
- Rating data
- Magnetic circuit data, e.g. from SPSYN, VPSYN or ASYN

Leibniz

Universität Hannover

- Internal rotors only
- Radial-flux machines only
- No solid salient-pole or cylindrical rotors

UWELLE – Calculation of shaft voltages

Scope of calculations

- Analytical calculation of shaft voltages caused by imperfections and unbalances in the magnetic circuit
- Consideration of damper windings
- Influence of rotor skewing
- Consideration of non-linear magnetizing curve
- Different types and distributions of imperfections in the stator yoke
- Frequency-dependent analysis of resulting (damped) shaft voltages sorted by cause

Machine type(s)

Cage induction machines

 Geometrical and winding data of the active part of stator and rotor

Leibniz

Universität Hannover

 Operating point data and corresponding magnetic voltages

- Imperfections in stator possible only
- Cage rotors only

VOPI – Voltage on Power Interfaces

Scope of calculations

- Calculation of motor terminal voltage in accordance with IEC 61800-8
- Calculation depending on
 - voltage source (grid)
 - rectifier and converter
 - filter
 - cable parameters
 - motor performance
- Either calculation or manual entry of cable parameters possible
- Machine type(s)
 - Converter-fed machines

Input/requirements

- Grid voltage and type
- Fundamental frequency
- B6C/B2C/active rectifier
- 2-,3-, multilevel converters
- Filter type: none, dU/dt, sinusoidal filter, output reactor, HF common-mode filter
- Cable parameters: Capacitance and inductance per unit length / alternative: type and geometrical cable dimensions
- Motor performance

VPASYN – Quasi steady-state start-up of synchronous machines with cylindrical rotor

- Scope of calculations
 - Asynchronous start-up, quasi steady-state, analytical
 - M-n characteristic considering the Goerges dip
 - Asynchronous torque, pulsation torques
 - Bar- and ring-type current distribution
 - Winding and damper bar temperatures
 - Start-up time
 - Consideration of current displacement

Machine type(s)

- Cylindrical-rotor synchronous machines with line start
- Input data
 - Geometrical data
 - Equivalent circuit elements (result of VPSYN calculation)
 - Thermal data
 - Start-up data: counter torque, cooling time

WAMOB – AC induction machines in consideration of spatial harmonics

- Scope of calculations
 - Speed-torque characteristic considering the positive- and negative-sequence harmonics
 - Power consumption and power output
 - Phase and line current
 - Capacitor voltage

Machine type(s)

- Cage induction machines with twoand three-phase stator windings for AC operation
- Steinmetz star and delta connection

- Input data
 - Winding data
 - symmetrical
 - quasi symmetrical
 - arbitrarily asymmetrical
 - Geometrical machine data
 - Rating data

- Cage rotors only
- Internal rotors only

WET – Winding design tool

Scope of calculations

- Design/analysis of multiphase integer-slot and fractional-slot windings
- Analytical calculation of all winding factors, differential leakage and symmetrical components of e.m.f.
- Visualization of the Goerges polygon and the resulting distribution of the ampere turns (including FFT)
- Symmetrical and (given) asymmetrical windings

Machine type(s)

 Induction and synchronous machines Input/requirements

- Winding design/analysis
 - number of phases
 - number of pole pairs
 - number of slots
 - number of layers
 - coil pitch for doublelayer windings
- Analysis of asym. windings
 - Specific. of winding diagram
 - Entry of number of turns, if required

Constraints

Max. two winding layers

Leibniz

Universität

WKF – Forces in the winding overhang and end-turn bracing

Scope of calculations

- Analytical calculation of forces in the winding overhang
- Recommendations for end-turn bracings
- Phase-to-phase and three-phase faults
- Start-up
- Form-wound coils with resin-rich or VPI insulations

Machine type(s)

- Induction machines
- El. excit. synchronous machines (optional, on request)

Input data

- Geometrical coil data
- Winding data
- Rating data
- Steady-state short-circuit current

- Internal rotors only
- Radial-flux machines only
- No round-wire windings